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Preface
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Astronautical Engineering Department of the Air Force Insti-
tute of Technology.
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thanks to my advisor, Captain James E. Rader, for the direc-
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i Abstract

)

A nonlinear, Square-Root Variable~Metric optimization
technique is used to extract time histories for the 1lift
coefficient, drag coefficient, and bank angle control
variables from radar data of the Space Shuttle Test Flight.
I. This optimization technigue solves for these control
variable histories by minimizing a weighted least squares
performance index of the calculated versus experimental
state equation time histories. The state model is a three
degree of freedom representation of aircraft motion.

Three intervals of data are evaluated. 1In each inter-

val, polynomial functions represent the control variables,

and the peformance index is dependent only on the values
of the polynomial coefficients. The larger of the first

two intervals contained the shorter interval so that the

effect of changing polynomial order and interval length
could be explored. The third interval compared the calcu-
lated parameter histories with NASA's BET parameter histories
with good correspondence. For all three intervals the
calculated state histories closely matched the experimental
state histories.

These results show that given an appropriate state
model, this optimrization technique is useful for gquickly

obtairing good and inexpensive estimates of certain desired

parameters.

Approved for public release; distribution unlimited
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NONLINEAR PARAMETER IDENTIFICATION: J
LIFT COEFFICIENT, DRAG COEFFICIENT, AND
BANK ANGLE HISTORIES FOR THE SPACE SHUTTLE

TEST FLIGHT I

I Introduction

Evaluating the performance of a new and technologic-
ally advanced engineering system requires a thorough, and
often redundant, study of test data. Agreement between
these different studies helps to reinforce any conclusions

derived from the tests. The Space Shuttle Test Flights

will, accordingly, be very well studied and documented.
The Space Shuttle trajectory is computed several different
ways, and this data enables important parameters, such as
lift coefficient, drag coefficient, and bank angle histories,
to be determined. These parameter histories give insight
into the performance of the Shuttle, so that expected
performance parameters can be evaluated for their accuracy.
NASA computes a "Best Estimated Trajectory" (BET)
(Ref 7), containing estimates of the parameter histories,
by using the data from the Aerodynamic Coefficient
Instrumentation Package (ACIP), which is on board the Space
Shuttle, and various radar data. The ACIP gives gyro and
accelerometer data, whereas the radar gives optical and

telemetry data. This data is combined, through a linear




stochastic estimation process, to produce an optimal six
degree of freedom (DOF) model of the Space Shuttle's trajec-
tory (Ref 3, 4, 5, 6),

Although NASA's BET is a good method for estimating
the trajectory and motion of the Space Shuttle, it may take
a few months to synthesize all of the available data into a
BET. Yet the radar data, such as the data from the Multi-
sensor Space Position Report (Ref 8:1), is sufficient to
calculate three DOF trajectories and performance parameters,
such as Cr, Cp, and #«#. This report proposes a simple and
inexpensive computer algorithm to evaluate this data and
come up with a good estimate of some of the performance
parameters of the Space Shuttle. This could provide an
on-line estimate, which evaluates the radar data as it comes
in. Its results could be compared to the BET in post data
analysis, which would help locate possible software errors
in the two estimation procedures and be used to confirm
wind tunnel data. The immediate results would also be
useful in evaluating the trajectory should anything go

wrong during the final landing phase of reentry.

Problem Statement and Method

This report tests a parameter estimation method which
can be used to evaluate the Space Shuttle radar data as it
becomes available. The method proposed is a slightly

modified Davidon-Fletcher~Powell (DFP) optimization technigque




derived by Williamson and Hull (Ref 4:1). The dynamical
system from which the parameters are identified can be
closely approximated without the need for linear stochastic
noise modeling by using a deterministic nonlinear state
model (Ref 4). The DFP variable-metric method, using such
a model, is an efficient, guasi second-order numerical
algorithm that minimizes a performance index. This perfor-
mance index is calculated from a weighted least squares fit
of the calculated onto the experimental (radar data) state
histories. The calculated state histories are dependant
upon the parameter histories through the coefficients of a
polynomial fitted to each parameter history. These coeffi-
cients are the variables that are changed to minimize the
performance index. The parameter histories that this report
identifies are the lift coefficient, the drag coefficient,
and the bank angle histories.

The data used to calculate the performance index
came from two sources. The first set of data came from the
Mulitsensor Space Position Report (Ref 8 :1). Its trajec-
tory histories supply sufficient information to derive the
time histories of the parameters €y, Cp. and)p through some
optimization technique, such as the algorithm in this report.
As this algorithm was being evaluated using the Multisensox
Report data, the NASA BET data became available. Although
the BET data was itself derived from a parameter estimation

process, it contains trajectory history data as in the




Multisensor Report. The parameter histories obtained by

the algorithm using these trajectory histories were compared

to the BET parameter histories. The degree of correspondence

- between these parameter histories provides a measure of the

accuracy of the algorithm.

Organization

1 Chapter II discusses the procedure used to extract the
parameters from the radar data. This will include a descrip-
3 tion of the Square-Root Variable-Metric algorithm and an
explanation of the mating of the state equations and data.
Chapter II1 explains the problems and pitfalls of manipulating

the algorithm to provide the best results. Chapter IV presents

the results and interprets their significance. Chapter V

summarizes the- report and gives an explanation of the useful-

ness of this parameter identification method.
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II Procedure

Methods of Parameter Identification

Many techniques have evolved that solve for variables
of interest from some collection of input. Each method has
proven useful at some time, although the degree of accuracy
between methods varies greatly. For instance, the BET gives
accurate parameter estimations given all of the available
data. Yet it was a time-consuming process to get the BET.
On the other hand, there are gradient optimization techniques
that are quick and inexpensive, yet only crudely approximate
the parameters. But there are certain common characteristics
of parameter estimation methods for a dynamical system. Hull
and Williamson (Ref 4:1) explain:

In general, the parameter estimation problem
for a dynamical system consists of finding the
values of a set of p constants C and n initial

states X, (assuming to=0) such that the solution
of the dynamical system

}oC= F(‘t,)C;CB (1)

fits the experimental data. The data is fit by
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minimizing the weighted least squares performance
index

—

.
J:=% (%-6) W(Y-6\) (2)

M=

\

were the subscript k denotes the time at which

the experimental data is taken and W is a positive-

definite diagonal matrix whose elements are the

inverses of the measurement convariance. The

quantity Y is a g-vector of the experimental values,

and G is g-vector of computed values which is related

to the state of the dynamical system, that is,

G = G(t,X).

The technique of parameter identification proposed in
this report is a compromise between the crude and the sophis-
ticated methods. It is a nonlinear method, which implies
that the state equations would exactly map the motion if the
three DOF model was an exact representation of the real
world. The Square Root Variable-Metric algorithm of
Williamson's (Ref 9:107) chooses = [30 C]T, where Xqo is

the initial state vector and C is a vector of constants

associated with the parameter histories, to minimize the

il s 2.




weighted least squares performance index. The algorithm is:

l. Guess g and a positive-definite, symmetric
matrix S. Compute J(g), J,(g) (the derivative
of the performance index with respect to g)
and H = ssT.

2. Compute the change in @ from the formula

AB = — = HIT (3)

) using a one-dimensional search to determine
the scalar step size o< which minimizes J in
! the -uJT direction. This search yields a new
function value J, where

T =J(p+ag) (4)
h 3. Compute a new gradient qF and form the difference
; ad? =37 - 3f (5)

| 4. Compute a new metric H from the relation
==T

H =SS (6)
where
S =s[1I - (w/a)sTyyTs) (7)
_ T T P, T
A =Y HAJ#, Y—«J’ +AJ!3
2 = [1+(1-B/A)%] / (B/a), B = YTssTy

If 2 is imaginary, use 2= 1 in the above
expression for S.

5. If the process has not converged, repeat the
procedure. Convergence has occurred when o~«<—1,
A—0 and B— O simultaneously.

Since the metric H is calculated as the S matrix times

its transpose, it will always bz positive definite. The

positive definiteness of H means the performance index will
decrease on every iteration, regardless of the accuracy in

calculating the S matrix. Likewise, the one~dimensional
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alpha search need not be extremely accurate, as is necessary
with the unmodified DFP algorithm, to maintain a positive

definite H.

Numerical Integration and Differentiation

The method used to numerically calculate J(F) is as

follows:

1. Guess values for X, and C to give P= (x, c)T.

2. Compute Yo - G(ty, X,) from guessed Xo. (Note
that in this report the initial state vector
Xo was assumed to _be equal to Yo and g was
therefore g= (ci1T.)

3. Integrate X = F(t, X, C) from ty to t;. This
enables Y, - G(tl,,Xl) to be computed. In this
manner, i%tegrate X and calculate Yg - G(tg, Xg)
until the final time (the last observation) is
reached.

4. Using Eq. (2), compute J(g).

The gradient of J(p), J (F)' is a vector calculated

]
through numerical differentiation by perturbing each element
of ﬁ and differencing the performance indexes that are calcu-
lated using the perturbed B vectors. The central difference

formula
3= [T, o 0950 0 o) = T(0u 8oy B30 )] /(268 D)

is the differencing technique used in this report, where Spi
is the perturbation in the jth element of g - This means
that each element of Jk requires two calculations, and hence

two integration loops, for J. The central difference formula

— o m e e

e




e

was chosen because it is uncomplicated yet provides a
truncation error of order S@z . Therefore, the smaller the

§p,, the better, but there is also a limit to how small S&
can be due to computer round-off error.

Hull and Williamson (Ref 4) say that "in order to have

the greatest number of correct significant figures in a
derivative, it is necessary to select the S@ which causes
the largest change in J while keeping the truncation error
of the derivative in check." J( FJ:: S 3; ), and hence J, ,

]

are computed using
Spi=¢le| if L a1 >1 (9)
$g,=€ ir g1

where € is a prescribed tolerance.

State Equations

The algorithm uses the following state equations to

model the three DOF motion of the Space Shuttle:

. . 10-15
X = Xy C/OS(XG.) Svn (Xs‘> ( )

X, = X cos (% coc (%)

X3 = Ka St (%)

Lwsmx) -4 Cpsxa) ]/ m

Xs= % Cops xq sin (O /(mcos (x)

%= L CLpsta cosim —wr cos(x ] Mmx)

z
(
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Fig. 1. Flat-Earth Coordinate System

These equations are derived from a flat-Earth coordinate

system (Fig. 1) where x3 is the altitude, x; and X, are the

planar coordinates orthogonal to the altitude such that the
coordinate system is right handed. The directions of X1 and
X, depend on which data set is used. The state x4 is the
magnitude of the velocity, x5 is the azimuth, and xg is the

flight path angle.

Data Manipulation

The algorithm requires an experimental trajectory (Yg)
as an input. The Yy is a time history of the states. The
radar data can be manipulated to give state vector values

at each time increment k. This report used two sources of

radar data to yield Yy, the Multisensor Report data and the
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BET data. The data from the Mulitsensor Report (Ref B8)

was with respect to an Earth Surface Fixed (ESF) Cartesian

Up- X, 1

3D

Xz_o - NurTh

X5° = Azimuth

Xp-Eas

Fig. 2. Earth Surface Fixed Coordinate System

coordinate system (Fig. 2) which rotates with the Earth.

Because the time intervals evaluated were very short (less

than two minutes in every case), the rotation of the Earth

was ignored in transforming the radar data into YK. As

shown in Figure 2, the ESF coordinate system had the

Bt R L et L anenhe

———— -

beginning of runway 23, Edwards AFB, as the origin, with the

X1p axis positive East, the Xop axis positive North, and
the x3p axis positive up. For Yx, the states Xy and X5

were given by Xip and x,p data, respectively. The azimuth,

Xgps was measured from North with the clockwise direction




being positive, and the flight path angle, Xgp+ was the
angle between the velocity vector and the (x;pr %,p) Plane.
For Y, the states X5 and xg were given by xgp and xgp,
respectively, and x, was given by the magnitude of the
velocity, which the Multisensor Report also provided.

The only state that needed to be calculated from the

X3- DOWV\

Fig. 3. Runway Coordinate System

given data was Xq. The Multisensor Report also provided the

altitude of the Space Shuttle. Therefore x3 was given by

the Space Shuttle altitude minus the altitude of the runway.
The BET data uses a similar coordinate system (Fig. 3).

The x3p axis is positive in the direction of the runway; the




Y

positive Xop axis makes up the third coordinate for the right

handed coordinate system with the X3p axis positive down (Ref 1).

Again, Xgpe (asimuth) is measured from North, clockwise

positive, and Xgp Was the angle between the velocity vector

and the (x1ps Xpp) plane. To arrive at state elements xj and

xy of Yy a rotation of 25.5 degrees was added to the xg term

in each of the *1 and *2 equations. This gave the %j and

iz equations a corrected azimuth measured from the Xop axis.
Although the Multisensor Report provided the altitude

of the Space Shuttle, for the BET data the altitude, and

therefore x3, the altitude of the Space Shuttle measured

from the origin at rurway 23, needed to be calculated using

the cosine formula for triangles

! 3 + A -
)(_‘:KRE.,L\'\“)I*, X‘:ﬁ)\; ’x:a - Z(Ri M Hm)(xu:* Xyp + )ﬁo) b CoS('Xgo/(l,;OXm + X,o)l"q CIC>>] -(R{ re (16)

Figure 4 shows the geometry that this equation was derived
from. This equation is applicable as long as x3p is negative
(Space Shuttle is above the horizon). Since this report is
concerned with data from radar stations along the West Coast,
the problem of x3p positive was not considered. The x5 and

Xg elements of Yy are given by Xgp and x¢p respectively.
Finally, the magnitude of the velocity, x4, is calculated

as the square root of the sum of the squares for ilD' §2D'

and i3D (which are provided by the BET).
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Parameters

The parameter histories of interest are Cy, Cp+ and S
The algorithm requires initial guesses for these parameter
histories. To solve for the initial time history for CL the
equation of motion in the vertical direction

L ocos (¥) cos (m) —wr = M\./i (17)

was used. The cos&u) term was chosen to be equal to one.
This approximation is based upon the knowledge that‘/u for a
heavy glider like the Space Shuttle should not exceed 45
degrees, and in most cases it will be below 30 degrees.
Therefore, at worst, this is a 70% accurate approximation.
Furthermore, Vvz(t;), which is the acceleration in the 2 (up)
direction at time t;, can be approximated by the central

difference formula

Vt(t‘>: (V%(ﬁ}\) - \/l<tt"\\' 3/ {'\.',. - ”(“,_ > (18)
Therefore, representing L as g_P«‘\vX‘ s Cle, we have
Clo= wlt ) -wt NV /aGa-t)) v 2] (12,00 m (19)

PSS VI, cos(Ye; )
where n is the length of the time interval of interest
divided by the step size taken between data points (n is the
total nurber of data points for each of Cy, Cp, and /x) and
where X(ti) is the flight path angle at time t;. The air
density (9) history is also derived from a Least Squares
polynomial fit to the air density data given by References

7 and 8.

16




For the Multisensor Report data, the Cp time history
guess was derived from lift over drag graphs in Reference 1. ;
The Cp history for the BET data was calculated using the 1lift
over drag (L/D) data already available from the BET. However
7 the initial C1, and Cp histories are calculated, the closer
they are to the true C;, and Cp the faster the algorithm will
converge. These initial histories will be compared to the
converged histories to determine whether or not they provide

a good initial guess for the estimation method.

™

For both sets of data the . initial time history was

4 derived from the *5 state equation, again using a discrete

time central difference to represent the derivative such

that
(20)

/L«(ﬁ‘ )= :;.A-‘LLAJ'CCS(XR~ -\)(thw 3o X -, )/(( (‘”—(‘_;) %CL X (a 15 vt )\)}

Note that ¥, X , and v represent flight path angle, azimuth,
and magnitude of the velocity, respectively, as did Y, X5
and x4 in the Xg equation.

Presently, @ is made up of three [nx1l] vectors C;, Cp,
and//J\(as mentioned previously, n is the number of data
points for each of Cy» €pr, and ), hence, ﬁ is a '3nxl1]
vector. Since the performance index is numerically differ-
entiated with respect to each element of /2, a smaller
number of elements of /9 will greatly reduce computation

time. Because n is the time interval length divided by the

time increment size, if n is small then either the increment




B

size is large or the interval length is short. Since it

is desired to fit the data points to a smooth "true" function
of the parameters, a relatively short increment size is re-
quired whether the interval is long or short. Therefore, the
size of n is predominately dependent upon the length of the
interval. To reduce the computational load by decreasing
the size of n would then mean a short interval. This would
lead to patching short intervals together in order to obtain
good parameter histories for a reasonable length of time.

To make n as large as possible and still cﬁt down on
the length of A’, a Least Squares polynomial fit is made to
the C;, Cp, and M histories. Since the true Cy;, Cp, and ..
time histories will be continuous functions of time, a
Least Squares polynomial fit to the discrete time parameter
data points is a reasonable model for their true histories.

The resulting coefficients are used as ﬁ and are called upon

to calculate C;, Cp, and X at any given time, for use in
the state equations.

A programming decision must be made when deciding the
order for the polynomials. Reducing the size of /2 without
sacrificing interval length was the initiative for using a
Least Squares polynomial model of the parameters, therefore
it is desired to fit the interval with the smallest order
polynomial, thereby decreasing the length of /3, and yet
maintain an accurate functional model of the paramreter %

histories. A rough plot of the initial parameter histories g

18




will give an idea what order polynomial will best approximate
the true parameters. Thus, within this chapter the methndology
for identifying parameters is explained as a weighted least
squares minimization process. The Square-Root Variable-Metric
algorithm, used in this report, minimizes the performance

index, J, by a modified DFP optimization technigque which

is quasi second-order with respect to the parameters of
interest (p). The derivative of J with respect to ﬁ is
calculated numerically using the central difference formula.
The state equation model of the three DOF motion of the Space
Shuttle was a flat Earth approximation. The experimental

state histories were extracted from the radar data according

to the coordinate system used. The initial parameter histories
were derived from the equation of motion in the vertical
direction (for C;), Reference 1 (for Cp), and the is state
equation (for « ). Finally, the method of least squares was
used to fit polynomials to the parameter histories, and the
length of the 2 vector was reduced by using the coefficients

of these polynomials as ﬁ .

19




III Programming Considerations

After fitting the appropriate polynomials to the
guessed parameter histories, as was discussed in Chapter II,
the algorithm is ready to find the optimal A - This
chapter will expand upon some of the more delicate program-

ming characteristics of the algorithm.

One Dimensional Search

The one dimensional search finds the wvalue of o< that

minimizes J in the -HJT direction.

min J( A +AB)
(21)

where

A p o= — e< u7

Note that it is this -HJT that supplies the algorithm with
guasi second-order converdence characteristics, since as H

is updated it approaches the inverse of the Hessian matrix.
There are many methods for arriving at the correct o but
all methods have certain inherent problems. The algorithm
becomes very sensitive to very small changes in /8 as

convergence is approached. Therefore, it is important to

- e
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keep from choosing a }6 that give a value for J too far
beyond the minimum in the -HIT direction since even a
small A(3 added to the /G can cause great changes in

J. This could result in improper updating of the S matrix
and likewise lead to searches in the wrong direction on
following iterations.

The method used to calculate 4;@ in this report

<

(Ref 2) involved setting o<, equal to <.+ ¢ , where

i=1,2,...; and e, , the initial o , is 0., and §

is a small constant of magnitude less than 0.1. This

new o<; 1is used to calculate Bi = Be-i + a3 '

and, hence, J;( 3:). This J; (z:-) is compared to

Ji-1 ( ﬁ(;‘> . If J; is less than J;-1, several

decisions must be made before the minimizing o< can

be found. If the difference between J; and J¢(-j is less

than some tolerance, then J _j] can be considered the

minimum. If the difference 1is greater than this

tolerance, the size of § is decreased and the

search is restarted from J;_j. This procedure of decreasing
¢ and restarting the search continues until (J;.; -

J7)/J3:-1 is less than the required tolerance. Note that

oc Mmust indicate the sum of all initialized and reinitial-

ized step sizes. Also, since it will remain positive

definite, the tolerances need not be extremely small to

21




maintain good convergence of the algorithm.

Convergence Criteria

The convergence criterion is based on (Jo - J:_;)/J,
less than some tolerance, where J, and J,_, are minimum
values of the performance index from two successive search
directions. If (J, - J;_1)/J, is less than the prescribed
tolerance, and, likewise, A —» 0, B—> 0, and ~< —> 1, then
the algorithm has converged. As convergence is approached,
the minimum J, J¢.j, may be the same as the value of Jy if
the one dimensional search only takes one step before its
tolerance is satisfied. For this case, if the percentage
difference (J, - J(—l)/Jo is greater than the prescribed
tolerance, then this tolerance, and the tolerance for the
one dimensional search are decreased and the one-dimensional
search is restarted. If the percentage difference is less
than the prescribed tolerance, and A, B, and o< have not
converged, then the S matrix is reinitialized to the identity
matrix, I, and a gradient step is taken. This is done on
the chance that H is not converging to the inverse Hessian
matrix and needs to be reinitialized. Generally, the

algorithm has reached convergence before this step is used.

Differentiation

Another programming consideration is the choice of the

best € for the numerical d4differention of J((g). Hull

22
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and Williamson (Ref 4) explain a method for calculating the
best € which involves taking second nunérical derivatives.
Instead, to simplify the algorithm further, derivatives
were calculated with several different values of & . A
value of &€ = {,0E-4 gave the largest number of significant
digits in the derivative without it being affected by
computer roundoff, making this the &€ of choice for this

algorithm.

Nondimensional Coefficients

For higher order polynomials, such as the sixth order
polynomial used to fit the parameter histories, the relative
magnitude between coefficients may be very large. Since
these coefficients are all differentiated using the same
size & , the elerents of the J vector may likewise be of
widely varying magnitudes. This makes the algorithm more

sensitive to some elements than others, thereby retarding

the overall update of S. Also, this disparity in J element
magnitude will increase the truncation error, hence, weaken-
ing the ability of the algorithm to converge.

This algorithm therefore used a nondimensional ,3
vector to make the magnitudes of the polynomial coefficients
more "even", thereby mraking the J elements about the same

A
order of magnitude also. This involved multiplying

the coefficients by the final time of the interval to the
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power that the coefficient has in the polynomial (for instance,

a second order polynomial, Co + Clt + C2t2, would have Cor

2
£

- elements of g had to be redimensionalized, by dividing by

Cltf and C2t as the nondimensional coefficients). These

the appropriate power of tg¢, before calculating the Cp (),
Chlty), and _aa (t;) values called for in the state equations

during the integration.

Weighting Matrix

The weighting matrix had to be adjusted to find the
best choice of diagonal elements for the fastest convergence.
The Multisensor Report gives an idea of the uncertainties
to expect of radar data (Ref 8) as shown in the Appendix.

The use of a diagonal weighting matrix is a restriction to
the full inverse measurement covariance matrix weighting.
Although the statistical description of the radar data state
errors are correlated, a diagonal, uncorrelated, error model
was used to simplify the computations, and hence, speed

the convergence of the algorithm. The fastest convergence

was achieved by weighting the values of Xg and Xg {(angles)

up to eight orders of magnitude more than the X0 Xgu and
Xq (distances) states, and up to four orders of magnitude I
more than x4 (velocity). Comparisons are made in Chapter

IV of runs using different weights.




IV Results

Two runs were made, using Multisensor Report data, to
test the convergence characteristics of the algorithm. Once
the algorithm was working properly, a run using BET data
was fully converged and analyzed. The two test runs, (call
them Run 1 and Run 2), were straight landing approaches.
Therefore the ;5 equation (rate of change of azimuth) was
nearly zero, implying very small bank angles. The BET data
was taken from a turn. This arrangement of data runs allowed
evaluation of the algorithm characteristics during a rela-
tively simple flight history before testing the performance

of the algorithm during a period of active maneuvering.

Run 1
The first run spanned a seventy-eight second time inter-
val, ranging in altitude from 8667.5 feet to 14.9 feet.
Table 1 lists the calculated versus experimental state
histories, and the difference between them, element by element.
This run used 500 seconds of Central Processor (CP) time
to converge to A = 9.2 E~6,B=23.6 E-5, and & =1
using sixth order polynomials to fit the parameter histories.
The converged parameter histories are shown in Figures 5, 6,
and 7 along with the initial parameter histories. These
figures display the effectiveness of the method used to
calculate the initial parameters. The curves show corre-

sponding peaks and valleys and are of the same order, which
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State Histories (Run 1)

Table I

Time x, of G xy of G X3 of G | x4 of G xg of G | x, of G

(sec)] x of Y |[x, of Y | x3 of Y | xy of ¥ | x, of Y | x, of Y

x, =DIFF | x,-DIFF | x3-DIFF | x4-DIFr Xy =DIFF | x,-DIFF

(ft) (ft) (ft) (ft/sec) (rad) (rad)

6.0 25154.3 [ 12182.7 B04S9.5 582.2 | 4.26021 |-.352506
25114.3 12285.1 £085.3 575.7 4,247%1 -.34208

=40 102.4 36.8 -6.5 | -.01211 .010526

18.0 19323.5 9539.4 5724.3 552.9 | 4.29792 |-.345674
19219.4 9652.1 5688.8 562. L,2603 -.35G954

-104.1 112.7 -35.5 9.1 -.03762 |-.013866

30,0 13737.8 6967.9 3504,7 541.5 | 4.25736 |-.343423
13415.6 6982.5 3533.5 531.5 | 4.2324 |-.32987

-322.2 14.6 28.8 -9.7 -.02496 013553

42,0 8231.2 4137.8 1482 542.,6 | 4.22642 |-.269352
7Q78,5 4112.8 1336.6 543.6 | 4.281 -.33685

-252.7 -25. ~145.4 1. -.02542 |-.06745¢

54.0 2710.5 1270.8 282.5 502.7 L.,25053 |-.102-91
2400.7 11%82.3 142.,2 5C0.6 L,2726 -. 04538

-309.8 -97.5 ~-140.,3 =2.1 .02207 057111

A6.0 -2228.9 | -1074. 74.5 LOs.4 | L,2807 003401
-2527.5 -1190C.2 45,4 L402.7 L,26-8 -.01057

-20R,6 -105.2 -29.1 -2.7 -.016¢ -.013¢€1

78.0 | -61L43, -2892.5 55.3 321.8 | L4.26536 [-.038138
-6Lu8,Q -3066.7 14.9 320.8 4.,2726 -.0C524

-305.9 -174.2 -40.4 -1. 00724 (028568

DIFF = Difference between X
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means the initial parameter histories did not require exten-
sive changes, implying fast convergence. Although the
magnitudes differ somewhat for Cy and Cp, this can be
attributed to the inaccuracy of the reference area s(2462 &*) and
the average value used for w (198,200 1b), which were used

in calculating the initial parameters. The accuracy of the
algorithm for this run is on the order of 100 ft for the

X1, X2, and xj3 states, 5 ft/sec for x4, and 0.02 rad for

states x5 and xg (Table I).

Run 2

The second run spanned the first thirty-nine seconds
of Run 1 and used 500 CP seconds to converge to A = 5.2 E - 9,
B=7.9 E -9, and o= 1. The order of the polynomial
used to fit the parameter histories was varied from second
to sixth order. Figure 8 shows the converged lift coeffi-
cient histories for the two extreme cases of second order
and sixth order. The second order Cj curve slices through
the hills and valleys of the sixth order curve, yet, as
Tables II and III show, the state history fits for both
runs are nearly the same. This illustrates the importance
of choosing a polynomial of large enough order such that
all of the gross characteristics of the true parameter
history are mapped.

This interval was also used as a comparison to Run 1

to study how choice of interval length and order of poly-
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Table I1I

Second Order Folynomial State Histories (Run 2)

Time x, of G Xa 0of G xy of G xy of G xs of G x, of &
| (sec)] x, of ¥ | X3 of Y | X3 of Y | Xy of ¥ | X of ¥ | xv of ¥
& xy-DIFF | x.-DIFF | x,-DIFF | xy-DIFF | x.-DIFF | x,-DiFf
: (£t) (£t) (rt) (ft/sec) | lrad) oy
? 3.0 26636.5 | 12931.6 | 8648.4 580.1 | L.25241 |-.366667
; 26603.4 | 12965.6 8667.5 582.5 | 4.23G4 24207
| -33.1 3k, 19.1 2.4 | -,01301 | .024557
5 9,0 | 23722.2 | 11551. 74,00 .4 570.4 | 4.2516 |-.3686€8

235324 11621.9 7504.,6 565.3 4,2569 -.35605
g Zca,8 70.9 104.2 -5.1 | -.0247 .012618

15.0 | 20834.5 | 10240.7 6204 .2 562.1 | 4.27054 |-.348519
, 20503,1 | 10312.7 6291 . 560.4 | 4.2638 |-.370C1
f -141.4 72. 86.8 -1.7 | -.02674 |-,021391

21.0 | 17052.4 R028,8 5100.8 552,5 | 4.,28144 |-.324626
[ 17747 .8 8986.9 5108.9 558,09 | 4.2534 |-.34208
X “'21006 b‘801 8-1 60“’ -.02804 ".Ol?LJ’EL;’

27.0 | 15137.1 7606.9 4075.3 5424 | 4,25957 |-.313999

14830.2 7656, 1045, 3 540.5 | 4,2603 |-.32114
-306.9 49o.1 -30. -1.9 .00073 | -.007141
33,0 | 12398.9 6227.° 3061 .4 534,8 | 4,23146 |-.330014
12038,7 6282.2 30094 529.6 | 4,2185 |-.34208
-35902 54.“’ "52- ’5.2 -001296 _0012066
39.0 9754,7 47G9,2 1957.1 534, 4,2035 |-.380419
9328.2 4862.2 1895.9 538,8 | 4.2045 |=-.3577
-L26,5 62.3 -57.2 4,8 .001 .022719

DIFF = Differerce between x¢ of Y and x; of G




Table III
Sixth Order Polynomial State Histories (Run 2)

Time x of G x of G x of G X of G x of G x of G

(sec)] x of ¥ x of Y x ofY x ofY x of Y x of Y

x =-DIFF x -DIFF x =-DIFF x =DIFF x =-DIFF x =~DIFF

(ft) (ft) (ft) (ft/sec) (rad) (red)

3,0 26636.5 12931.6 8648 .4 580.1 L,25241 | -.366667
2660734 12965.6 B667.5 582.5 4.2394 -.34208

-33.1 34, 19.1 2.4 -.01301 024587

8.0 23732.2 11551. 740C. 4 570.4 4,2815 -.358E648
23603.4 11621.9 7504.5 565.3 L.2569 -.35€C5

-0Q,f 70.9 104,2 -5.1 -.0247 ,012€18

15.0 20834.5 10240.,7 6204,2 562.1 L4,29054 | -,348619
20693.1 10312.7 6291, 560.4 4,2638 -.370C1

-141.4 72, 86.8 -1.7 -.02674 |[-.021391

21.0 17¢58 .4 8938,8 5100,8 552.5 L,28144 | ~,324627
17747 .8 205,49 5108.9 558,9 L.2534 -.34208

-210.6 LR 1 8.1 6.4 -.02804 | -.017453

14830.2 7656, LoLs.3 540.5 4,2603 -.32114

-306.9 49.1 -30. -1.9 L0073 | -.00714

33,0 123G68,9 6227.8 3061 .4 £34.,.8 L,23146 |-.330014
12039,7 6282.2 3009.4 529.6 4,2185 -.34208

-350,2 sk 4 -52. -5.2 -.01296 |-.012066

39.0 a754.,7 476%,9 1957.1 534, 4,2035 -.380419
032R,2 4862,2 1899.9 538,.8 4,2045 -¢3577

-426.5 62.3 -57.2 4,8 .001 .022719

DIFF = Difference between x{ of ¥ and xi of G
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nomial affects the accuracy and convergence of the algorithm.
A comparison of Tables I and II, both calculated using
sixth order polynomials, shows that Run 2 was only slightly
more accurate than Run 1 at fitting the experimental state
histories over the same time intervals. Yet, comparing
Figures 9, 10, and 11 to the Run 1 figures shows that the
true parameter histories are more fully described by Run 2.
Therefore, the appropriate length of the interval and the
polynomial order are very dependent upon each other for
properly describing the true parameter histories. Again,
the initial parameter histories give a good means for
choosing an appropriate polynomial order.

This interval was also used to test the effect of
different W diagonal elements. Tables IV-VI represent
three state histories, each with a different W. Table IV
uses 1.E4 for the first three diagonal elements of W, (call
them wl, w2, w3, respectively), 1. for wd4, 1.E-4 for w5
and w6. This represents very accurate radar measurements
for the X10 Xy and X4 states relative to the measurements
for the Xg and Xg States. Table V, Wy, is with all six
diagonal elements as 1, such that all six radar measurements
are assummed of equal accuracy. Table III is the opposite
extreme to Table IV with, wl, w2, w3 as 1.F-8, w4 as 1.E-4,
w5 and w6 as 1. Comparing the convergence characteristics

of the algorithm using these different weighting matrices

34
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Table IV

State Histories for W1 (Run 2)

Time x, of G X, of G X4 of G xy of G xs of G x, of G

(sec)] x, of Y | xa of ¥ | X4 of ¥ | x4, of ¥ | x4 of ¥ | x, of ¥

x, =DIFF x,-DIFF X~DIFF x4 =DIFF x«~DIFF x, =DIFF

(ft) (ft) 2ft) (ft/sec) zrad) (rad)

3,0 | 26607.2 | 12936.7 8678.1 584,9 | 4.27907 |-.3305665
26603.4 12965.6 B8667.5 582.5 4.,2394 -.34208

-3.8 25.9 -10.6 2.4 | -.03967 |-.011415

9.0 23606.9 11641.5 7553.5 569.6 4.30936 -.3442¢6
23632.4 11621.9 7504,.5 565.3 L4.2569 -.35605

25.5 -19.6 -48.9 4.3 -.05246 |-.01175-

15.0 20683,.5 10348, 6331.5 573.8 4.,28289 |-.377847
20693.1 10312.7 6261 . 560.4 | 4.2638 -.37001

[ 9'5 -35’3 —1'"’0'5 _13'[4’ '-01909 ‘OCEBB?

21.M0 17753.2 RGO9L 8 5089.7 575.7 4,2808 -. 343946
17747 8 R985,9 51N08.9 £58.9 L,2534 -.34208

-S.LL -7-9 1902 -1608 -.OZ?L" 0001866

27.0C 14R22,73 7636.7 4032.2 554.,2 L,27064 |-.2GR67
148230.2 7655, 4045,3 540.5 4.,2603 -.32114

7.9 19.3 13.1 -13.7 -.0103% [-.027%273

33.0 12044.,73 6283. 3017.5 534,3 4,24955 | -,35C0458
12039.7 6282.2 3009.4 529.6 4.2185 -.34208

4,6 -.p -8.1 4.7 -.03105 .CCB378

39,0 9368.6 LALR, 3 1915." S48, 4 4.,1116 -.283106
9328,2 L862.,2 1899, 538,8 4,2045 -.3577

~40.4 13.9 -15.2 -9.6 0929 | -.074594

DIFF = Difference between x; of Y and x{ of G




Table V

State Histories for W2 (Run 2)

Time x, of G x, of G xy, of G xq 0of G xg of G x, of G

(sec)] %, of Y | xa of Y | x5 of Y | x4 of ¥ | x¢ of ¥ | x, of ¥

x, =-DIFF | x,-DIFF | x,-DIFF | x4-DIFF | x;-DIFF x, ~-DIFF

(ft) (ft) (ft) (ft/sec) (rad) (rad)

3.0| 26580.7 | 12925.6 R658.1 507,9 | 4,27551 | -.338229
26603.4 | 12965.6 8667.5 582,5 | 4.,2394 | -.3420C8

22.7 Lo, 9.4 -15.4 | -,03611 | -.003%51

9.0 23604.9 | 11615.6 7509.5 558,1 4,30572 | -.35C558
23632.4 | 11621.9 7504.6 565.3 | 4.2569 |-.35605

27.5 6.3 -4.,9 7.2 | -.0LEE2 | -,005462

15.0 20716.3 10343.6 6309.9 573.8 L, ,28822 | -.35795E
20693.1 10312.7 6291. 560.4 | 4.2638 | -.37001

-23.2 -30.9 -18.9 “13.4 | -.02442 } -,7C2052

21.0| 17741.3 ROR5,2 5102.9 580. 4,28332 | =.333341
17747 ,F RoRE,Q 5108.9 558.9 | 4.3534 ~. 34208

6.5 1.7 6. ( -21.1 -.02992 | -,008739G

27,0l 1u4810.2 | 76hh. | bOB5.S | 546.6 | 4.27632 | -.311272
14230.2 7655, LOL5,3 | 540.5 | 4.2603 -.32114

11. 11.9 -.2 -6.1 -.01602 | -.0C985E

33.0] 12056.2 62°8.9 3010.7 544 .1 L,23853 | =.342631
12039.7 6282.2 3009.4 529.6 | 4.,2185 | -.34208

-14.5 -16.7 -1.3 -14.,5| -.02003 | -.00C551

39,0 9325.3 LEL8,9 1905.2 522,9 | 4,22591 | -.322315
032%,2 LRg2.2 1809,9 538,8 | 4.,2745 | -.3577

2.9 13.3 -6.3 15.9 | =-.02141 | -.035365

DIFF = Difference between x; of Y and x{ of G
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Table VI

State Histories (Run 3)

Time x, of G x, of G x, of G xy of G x, of G x, of G
. (sec)] x, of Y | xa of Y | x; of ¥ | x, of Y | xs of Y | x, of Y
X, =DIFF x,=-DIFF X,=-DIFF x4=DIFF x¢=DIFF x,-DIFF
'; (ft) (ft) (ft) (ft/sec) (rad) (rad)
E 3.0 | -53292.5 ~6167.2 17065.8 605.7 |=-1.19648 |-.2557E3
t -53262.6 -6175.3 17064.,7 613.1 |-1.21249 |-.250091
r 29.8 -8.1 -1.1 2.4 | -.016 .006
& 12.0 | =4G293.1 -2820.2 15593,5 605.2 |-1.46558 |-.207504
; -49092.,.5 -2887.3 15695.2 5009.,2 |~-1.47314 [-.278401
- 200,6 -167. 101.7 -5.9 -.008 .C16
[ 21,0 | -L445826,7 -856.4 13870.4 606.2 [-1.76756 |-.341253
E -4hy3R,9 -872.7 13¢13.3 609.9 |-1.67224 |-.38B1764
F R7 R -16.3 42,8 3.7 .095 -.041
3 30,0 | -39500.2 -32.0 | 11957.9 603.5 |-1.91483 |-.378649
t -39482.,7 102.3 119?1 5 602,929 |-1.09473 |=.381707
‘r‘ 170L" 135-1 3 -06 .01 -COCL"
‘ 39.0 | -34513.3 20,2 | 9915.7 594.5 |-1.98017 |-.3658%%
-34061.1 230.7 9c99, 592.1 |-1.9948¢ |-.255206
52.1 -68.5 £2.3 Z2.4 | -.015 017
Le,0 | -20584,3 375.4 80583.8 576.2 |-2.00653 | -.332453
-29512.6 256.9 8217 .4 578. -1.97712 |-.351077
71.7 -118.5 158.5 1.8 .029 -.019
57,0 | =24736.1 510.8 6301.3 575.5 |=1.98293 | -.410185
-24€70. 325.1 6461 .3 573.2 |-1.9584 ~ 376547
66.1 -125.7 160.4 -2.3 -.002 034
DIFF = Difference between x_ of ¥ and x; of G
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provides a method for choosing the best weighting matrix.

As would be expected, the heavily weighted states
converged better for all three cases. Table V shows that
the algorithm ignores the small xg and Xg histories |
because they contribute little to the performance index
compared to the xy, Xy and x3 states. Table III shows
the order of weighting according to the Appendix, where
the range (x;, x, and x3) has uncertainties on the order
of 50 ft and the azimuth and elevation measurement (xg and
Xg) uncertainties are five to seven magnitudes smaller at
2.E-3 rad to 2.E-5 rad.

Table IV has the best fit for the states x and

ll X2l

x3 but the algorithm never converged. This can be explained

by the extremely small weights for Xg and Xe 1 thereby

causing the algorithm to ignore these states when computing
the performance index. For this reason, the parameter
histories, which are very dependent upon the x5 and xg states
(see the state equations), did not converge to the proper
values. The same reasoning applied to the Table V weights,
for which the run did not converge. Therefore, although

the weighting matrix for Table III had a less accurate fit

to the experimental trajectory states Xyr Xyy and Xq0 it is
the matrix that most closely represents the true error model.

The errors for the states in Table III are representative of

the magnitude of the errors that can be achieved by this




algorithm while providing converged (good) parameter

histories.

Run 3

The third run used data from the BET as the experi-
mental values. As was previously mentioned, the BET
provides state history data which was used in this run.

Since the BET also provides the C, and Cp histories for

L
this trajectory data, the converged algorithm should yield
similar parameter histories. This allows the algorithm to
"prove" itself against the BET's parameter estimation
procedure.

This run used 500 CP seconds to converge to A = 1.E-7,
B = 6.E-5, and o< = 1l. The state time histories are
listed in Table VI. The initial and converged parameter
histories are portrayed in Figures 12, 13, and 14. Notice
f that the bank angle fit was very good, as the accuracy of
? the x, state history fit implies, although the initial and

5
converged parameter histories are significantly different

in magnitude. This shows the ability of the algorithm to
converge given a poor initial /3 .

Because the lift to drag ratio (L/D) can be calculated
without the need for a reference area, s, and a weight, w,
the L/D for the converged g was compared to the L/D values

given by NASA's BET, so that the comparison is only dependent

e e kel
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upon the two methods of parameter estimation. Figures 15
and 16 present in graphic form the comparisons of the
initial to the converged and the converged to the BET L/D
ratios, respectively. Figure 16 shows good correspondence
between the two methods of identifying the L/D ratio. The
BET L/D history is not restricted to be a smooth polynomial.
The beginning and end of the converged polynomial L/D
history does not correspond as well to the BET values.

This can be attributed to the assumption that X, was perfectly
known and to the use of polynomials of lower order than

may be necessary for the interval length (Figure 12, for

instance).
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V Conclusion

Summary

This report presented a nonlinear parameter identi-
fication algorithm that was used to find Cys CD' and/f&
time histories, derived from radar trajectory data, for
the Space Shuttle reentry. The algorithm, a Square-Root
Variable-Metric optimization technique, (Ref 4,9) provided
a fast and inexpensive method for obtaining good results
for the parameter histories, by minimizing the weighted
least squares performance index, J, of the experimental
versus calculated state histories.

There were several programming considerations
discussed in Chapter III. The procedure used to execute
the one dimensional search was detailed, showing a need
to manipulate the tolerances for convergence and to vary
the step size when needed. Finding the best numerical
differentiation constant, €& , was done by varying &
until the most accurate estimate of the derivative was
obtained. This reduced errors due to computer round-off
and central difference formula truncation. Nondimensional
polynomial coefficients were also used to reduce these
errors. Finally, by inverting the magnitude of the
uncertainties given in the Appendix, the diagonal elements
of the W matrix were chosen.

The results were presented and analyzed in Chapter 1V.
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| Run 1 and Run 2 tested the mechanics of the algorithm %
dependent upon the choice of interval length, polynomial |
order, and weighting matrix. It was shown that the initial
parameter histories were close enough to the converged
values to give fairly rapid convergence. Run 3 used the
BET parameters as a comparison to the converged solution
using the BET state histories as the radar trajectory data.
This showed good correspondence between the two estimation
methods for a L/D ratio time history, hence, giving confi-
dence in the algorithm's effectiveness (Fig. 16). It was
noted that, because of the characteristics of polynomial
approximation and the assumption that x5 was fully known,
the converged parameter histories may be inaccurate at

the ends of the time intervals. All three runs converged
well to the given experimental state histories (Tables I,
II, and III), but not all of the parameter history charact-
eristics were portrayed if the order of the polynomial fit

did not match correctly with the interval length.

Computer time was short, about 500 CP seconds (hence,

inexpensive) and was made shorter by choosing smaller order

polynomials.

Recommendations

This algorithm provides a relatively simple method for

identifying parameter histories. The results for the nonlinear




state model, deterministic, Square-Root Variable-Metric

optimization routine corresponded well with the BET results

without the problems of matrix inversion. The computer

load is very manageable with 500 CP seconds as an average
time for fitting about a minute long interval with a sixth
order polynomial using the CDC Cyber 74.

2 Because the radar data is readily available for most

.

of the Space Shuttle reentry trajectory, this algorithm
could be useful for quickly yielding good parameter history
results. These results would allow evaluation of maneuvers
4 or unplanned motion without the long wait for NASA's BET.
This could perhaps be useful for speeding up the turn

1 around time between launches should any problems which

might arise during reentry need evaluation before the

next launch.

Redundant results are important when testing the
performance of a system. Using this parameter identifica-
tion process would give a second, redundant, means for
evaluating the accuracy of the BET data. Although NASA's
BET gives a full six DOF evaluation of the Space Shuttle's
reentry, such a comparison would inspire more confidence in
the BET results.

The method used here to identify parameters can also
be used where any parameters need to be found, as long as

an appropriate state model is given. The polynomial fits,
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one-dimensional search development, and weighting matrix
choice are all appropriate considerations whether using
this or a similar optimization technique. Therefore, the
results presented give insight to what can be échieved
in the field of nonstochastic parameter identification.
Further work with this algorithm could explore the
use of a full measurement covariance matrix inversion
as the weighting matrix. This would more accurately
describe the real world radar errors and thereby improve
the accuracy of the algorithm. Also, the state model
could be expanded to more accurately describe the Space
Shuttle three DOF motion. Spherical Earth, wind, and
noise modelling would all increase the accuracy of the
model, but at some degree of expense to the speed of
convergence, as the computational load increases
due to a more complex dynamical system model. The trade-off
of accuracy versus speed of convergence can be studied

using the results of these further studies and the results

presented in this report.
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Appendix

The following four tables are from Reference 8.
The first two tables, C-] and C-2, show the weights and
apriori bias information for the Multisensor Report data.
Tables D-] and P2show the radar measurement mean and
uncertainties. The diagonal elements for the weighting
matrix were arrived at by combining the bias and uncertainty
magnitudes and inverting them. The first three diagonal
elements, representing states xj, Xos and X3, are weighted
from the range magnitude and the last two diagonal elements,
representing Xg and xg, are weighted from the azimuth and
elevation magnitudes. The fourth diagonal element, repre-
senting the weighting of the Xy (velocity) state, was
given a value of magnitude between the range and azimuth
magnitudes since Doppler residual statistics were not

provided.
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" 1
|I SENSOR WEIGHTS AND APRIORI BIAS INFORMATION FOR RUN NO. 3
l R NEIGHTS BIASES BIAS UNCERTAINTIES
SENSOR
l ) Range | AzimutH| eLev. | range |azimuTe | erev. | ranse [azimute| ELev.
(FeeT) | (oes) | (oes) | (FEeT) | (oea) | (oes) | (FeeT) | (vee) | (oEs) |
| rps16/38] 30.00 | .o0s | .o08 | 19.52 | .00474| .00837 | 63.09 | .03261| .03266
NASA
I FPs16 | 30.00 | .oos8 | .008 | 10.41 | .00065| .01140 | 58.62 | .03307| .02606
PQ18
| saas | 30,00 | .oos | .oo8 | -38.25 | .01682) .01991 | 65.66 | .02749] .02993
c1 0.00 | .o03 | .003 0.00 | -.00143|-.00163 | o0.00 | .00524] .00344
l ca 0.00 | .003 | .o003 0.00 | .00318]-.00159 | 0.00 | .00s07! .00383
cs . 0.00 | .00z | .003 0.00 | -.00139]-.00197 | 0.00 | .00496| .00287
] c6 0.00 | .003 | .003 0.00 | .00574]-.00191 | ©0.00 | .01010| .00435
- c7 0.00 | .003 | .o03 0.00 | -.00379] .00296 | 0.00 | .00s27] .00509
} TABLE C-1
| BIAS ESTIMATION RESULTS AND UNCERTAINTIES FOR RUN NO. 1
! BIASES BIAS UNCERTAINTIES
F SENSOR
; _RANGE AZIMUTH | ELEVATION | RANGE AZIMUTH | ELEVATION
E (FEET) (DEG) " (DEG) (FEET) (DEG) (DEG)
l FPS16/38 27.87364 |  .00109 02611 | 1.389%04 | .00035 .00039
1 NASA FPS16 | 17.88180| -.00161 .02940 1.29678 | .00033 .00039
f TPQ18 SA 48| -27.56410|  .01939 .04245 1.76858 | _.00038 .00044
f c1 0.00000| -.00712 .00680 .00000 | .00026 .00033
2 ca 0.00000]  .00281 .00476 .00000 | .00019 .00026
: cs 0.00000] -.00280 .00504 .00000 | .00021 .00027
{ c6 0.00000|  .00632 .00498 .00000 | .00020 ,00025
j c7 0.00000| -.01127 .01350 .00000 | .00029 .00036
TABLE C-2




RESIDUAL STATISTICS FOR RUN NO._ 1

MEAN UNCERTAINTIES
SENSOR
' RANGE AZIMUTH | ELEVATION |  RANGE AZIMUTH | ELEVATION
(FEET) .(DEG) (DEG) (FEET) (DEG) (DEG)
FPS16/38 .00273 | -.00000 .00000 61.20026 | .03209 .02937
NASA FPS16 | .00252 | -.00000 .00000 59.67920 | .03065 02285
TPQ18 SA 48| .00404 .90000 .00000 54.70393 | .02703 | .02392
c1 - -.00000 .00002 - .00521 .00315
c4 - -.00000 .00001 - .00438 00392
cs - -.00000 .00002 - .00476 .00285
c6 - .00000 .00001 - .01114 .00439
c7 - -.00000 .00001 - .00639 .00427
TABLE D-1
POSITIONAL UNCERTAINTY STATISTICS FOR RUN NO. 1
COORDINATE MEAN (FEET) UNCERTAINTIES (FEET)
R SPHERICAL ERROR 43.76213 60.96327
X TOTAL © 14.33824 15.27715
Y TOTAL 25.19341 38.38616
Z TOTAL 31.88084 45.47689
X RANDOM 14.31515 _ 15.25862
Y RANDOM 25.15378 38.33737
Z RANDOM 31.80159 45.39780
X SYSTEMATIC .80540 .76054
Y SYSTEMATIC 1.39732 1.94573
Z SYSTEMATIC 2.17653 2.73815
TABLE D-2
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